Методы решения задач обучения с подкреплением

Метод Монте-Карло

Метод Монте-Карло

- Что делать если у нас нет модели в виде переходных вероятностей и ожидаемых подкреплений?
- Мы можем использовать (усреднять) получаемые возвраты
 - Работает только для эпизодических задач
 - Может использоваться в процессе взаимодействия агента со средой
 - Может использовать модель, от которой требуется только генерировать возможные эпизоды

Оценка стратегий методом Монте-Карло

- □ Мы хотим определить ценность $V^{\pi}(s)$ состояния s для стратегии π .
- Имеются записи эпизодов, в которых агент управлялся π проходил через состояния s.
- Усредняем возвраты полученные после посещения состояния s.
 - Метод первого посещения
 - Метод любого посещения
 - оба сходятся в пределе если посещаются все состояния.

Алгоритм оценки стратегии методом Монте-Карло первого посещения

Вход: π – оцениваемая стратегия

Инициализация:

V(s) – произвольно, Returns(s) – пустой список для всех $s \in S$.

Повторять вечно

- а) Генерировать эпизод используя π
- б) Для всех состояний s в эпизоде $R \leftarrow \text{Возврат}$ после первого посещения s. Добавить R в Returns(s) $V(s) \leftarrow \text{Среднее значение } (Returns(s))$

- □ Играют игрок и дилер
- Стоимость карт
 - Цифры по своему номеру
 - Валет, дама, король 10
 - Туз 11 или 1
- В начале игры каждый получает по 2 карты, одна из карт дилера открыта
- Игрок может или брать по одной карте или остановится
- Дилер берёт карту если его сумма меньше 17, иначе останавливается
- Если кто-то набрал больше 21 он проигрывает
- □ Тот, кто набрал сумму ближе к 21 выигрывает

- □ Эпизодический конечный МППР
- □ Подкрепление +1 (выигрыш), -1 (проигрыш) или 0 (ничья) в конце эпизода, остальные 0
- \square Не используется дисконт $\gamma = 1$
- □ Действия брать карту (hit) или остановится (stick)
- Состояния (200 штук):
 - Сумма карт игрока (12...21)
 - Открытая карта дилера (туз...10)
 - Есть ли у игрока туз, который можно считать как 11 (да/нет)

- □ Рассмотрим стратегию «брать карту пока сумма не станет равна 20 или 21»
- Моделируем много игр и усредняем возвраты полученные после каждого из состояний
- Состояния в игре не повторяются, поэтому нет разницы между методом первого и любого посещений.

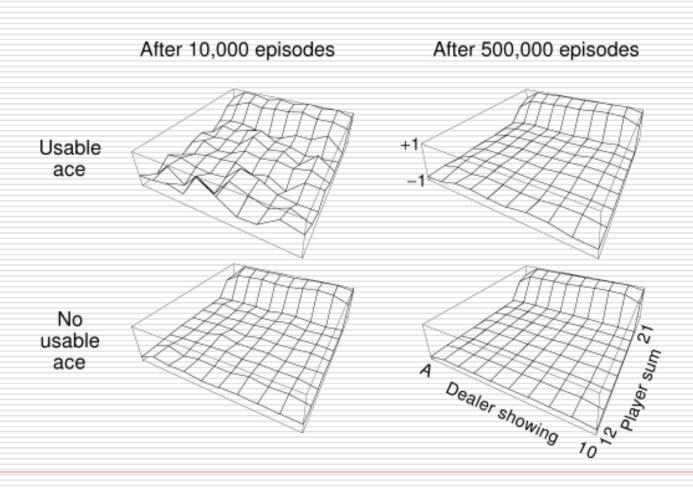
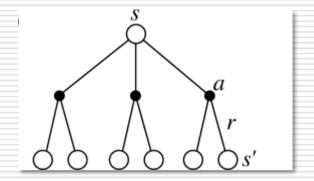


Диаграмма обновлений метода Монте-Карло

Метод Монте-Карло

Динамическое программирование



Пример – мыльная плёнка

- Какую форму примет мыльная плёнка, натянутая на изогнутую проволочную рамку?
- Сила, действующая со стороны соседей в каждой точке равна 0
 - Высота в каждой точке равна среднему значению высоты в ближайшей окрестности
 - Значения высоты для краевых точек равны высоте рамки

Пример – мыльная плёнка

- □ Разобьём поверхность сеткой
- Вариант 1
 - Фиксируем краевые точки по высоте рамки
 - В цикле заменяем высоту в каждой внутренней точке на среднюю высоту соседей
- Вариант 2
 - Берём внутреннюю точку и генерируем много случайных путей до границы
 - Высота в точке равна среднему значению достигнутых точек границы

Оценка стратегий методом Монте-Карло

- □ Хорошо
 - Работает на основе опыта
 - Вычисления для одних состояний не зависят от вычислений для других состояний
- □ Плохо
 - Не имея модели мы не можем на базе V строить жадную стратегию
 - ⇒ Нужно оценивать не V а Q.

Оценка действий методом Монте-Карло

- \square Аналогичным образом оцениваем Q(s,a) на основе имеющегося опыта.
- Мы должны посещать все пары (s,a), т.е. для каждого состояния мы должны пробовать все действия.
 - Будем рассматривать эпизоды начинающиеся со всех возможных пар (s,a)
 - Случайные стратегии

Итерация стратегий методом Монте-Карло

□ Используем Q, а не V:

$$\pi_0 \xrightarrow{o} Q^{\pi_0} \xrightarrow{y} \pi_1 \xrightarrow{o} Q^{\pi_1} \xrightarrow{y} \pi_2 \xrightarrow{o} \cdots \xrightarrow{y} \pi^* \xrightarrow{o} Q^*$$

□ Жадная стратегия (улучшение):

$$\pi(s) = \arg\max_{a} Q(s, a).$$

- □ Сходится если:
 - Начинаем со всех возможных (s,a)
 - Вычисляем оценку наблюдая бесконечное число эпизодов

Итерация стратегий методом Монте-Карло

- Что делать с бесконечным числом эпизодов?
 - Если мы хотим вычислять Q^π на каждом шаге: можем оценивать возможное отклонение и ждать пока оно не станет слишком малым.
 - Можем не ждать пока завершится вычисление Q^{π} , а переходить к улучшению после некоторого числа вычислений
 - Для методов Монте-Карло естественно проводить вычисления после окончания эпизода

Алгоритм Монте-Карло с произвольным началом

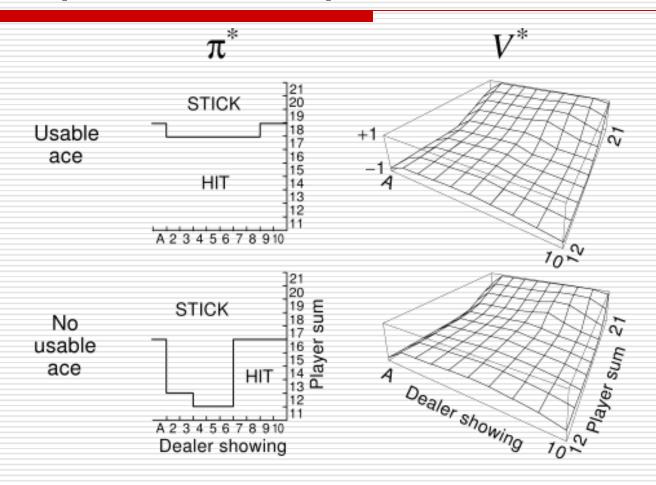
Инициализация:

 $Q(s,a),\pi(s)$ – произвольно, Returns(s,a) – пустой список для всех $s \in S, a \in A(s)$.

Повторять вечно

- а) Генерировать эпизод используя π и все возможные варианты (s,a) в качестве начала
- б) Для всех пар (s,a) в эпизоде $R \leftarrow \text{Возврат после первого посещения } (s,a)$. Добавить R в Returns(s,a) $Q(s,a) \leftarrow \text{Среднее значение } (Returns(s,a))$
- в) Для всех состояний s в эпизоде $\pi(s)$ =arg max_aQ(s,a)

Пример – как играть в 21



Управление методом Монте-Карло

- □ Как отказаться от допущения произвольного начала эпизода?
- Агент должен выбирать все возможные действия в процессе:
 - Управляем и оцениваем одну стратегию
 - □ Стратегия должна быть случайной
 - Управляем и оцениваем разные стратегии
 - □ Можем оценить не случайную стратегию

Управляем методом Монте-Карло следуя оцениваемой стратегии

- \square Агент должен пробовать все возможные варианты действий \Rightarrow стратегия должна быть мягкой, т.е. $\pi(s,a)>0$ для всех s,a.
- □ ε-мягкие стратегии: $\pi(s,a)$ ≥ε/|A(s)|
- \square ε-жадные $\pi(s,a)=\varepsilon/|A(s)|$ для не жадных действий, остальное для жадных.

Управляем методом Монте-Карло следуя оцениваемой стратегии

- Используем идею обобщенной итерации стратегий
- Мы не можем делать стратегию жадной, но можем смещать её в направлении жадной – используем ε-жадные стратегии.
- \square Для любой ε-мягкой стратегии π , любая ε-жадная относительно Q^{π} стратегия гарантированно не хуже π .

Итерация ε -жадных стратегий

 \square Пусть π' - ε -жадная относительно Q^π стратегия

$$Q^{\pi}(s, \pi'(s)) = \sum_{a} \pi'(s, a) Q^{\pi}(s, a)$$

$$= \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + (1 - \varepsilon) \max_{a} Q^{\pi}(s, a)$$

$$\geq \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + (1 - \varepsilon) \sum_{a} \frac{\pi(s, a) - \frac{\varepsilon}{|\mathcal{A}(s)|}}{1 - \varepsilon} Q^{\pi}(s, a)$$

$$= \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) - \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a) + \sum_{a} \pi(s, a) Q^{\pi}(s, a)$$

$$= V^{\pi}(s)$$

Следовательно $\pi' \geq \pi$.

Итерация ε -жадных стратегий

Покажем, что $\pi' = \pi$ только когда обе стратегии являются оптимальными, среди ε -жадных.

Рассмотрим среду, которая с вероятностью $1 - \varepsilon$ ведёт себя как исходная, а с вероятностью ε - так, как будто было случайно выбрано другое действие.

Лучший результат, который может быть достигнут в такой среде соответствует лучшему результату который можно достичь в исходной среде применяя ε -жадные стратегии.

Пусть $ilde{V}^*$ и $ilde{Q}^*$ - оптимальные функции ценности для новой среды.

Тогда стратегия будет оптимальна среди ε -жадных тогда и только тогда, когда $V^{\pi} = \tilde{V}^*$.

Итерация ε -жадных стратегий

$$\begin{split} \widetilde{V}^*(s) &= (1-\varepsilon) \max_{a} \widetilde{Q}^*(s,a) + \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} \widetilde{Q}^*(s,a) \\ &= (1-\varepsilon) \max_{a} \sum_{s'} \mathcal{P}^a_{ss'} \Big[\mathcal{R}^a_{ss'} + \gamma \widetilde{V}^*(s') \Big] \\ &+ \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} \sum_{s'} \mathcal{P}^a_{ss'} \Big[\mathcal{R}^a_{ss'} + \gamma \widetilde{V}^*(s') \Big]. \end{split}$$

$$V^{\pi}(s) = (1 - \varepsilon) \max_{a} Q^{\pi}(s, a) + \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} Q^{\pi}(s, a)$$
$$= (1 - \varepsilon) \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \Big[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \Big]$$
$$+ \frac{\varepsilon}{|\mathcal{A}(s)|} \sum_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \Big[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \Big].$$

Так как \tilde{V}^* - единственное решение, то $V^\pi = \tilde{V}^*$.

Алгоритм оценки текущей стратегии методом Монте-Карло.

Инициализация:

```
Q(s,a) – произвольно, \pi(s) – любая \epsilon-жадная стратегия, Returns(s,a) – пустой список.
```

Повторять вечно

- а) Генерировать эпизод используя π
- б) Для всех пар (s,a) в эпизоде $R \leftarrow \text{Возврат}$ после первого посещения (s,a). Добавить R в Returns(s,a) $Q(s,a) \leftarrow \text{Среднее значение } (Returns(s,a))$
- в) Для всех состояний s в эпизоде $a^* \leftarrow$ arg $\max_a Q(s,a)$ Для всех $a \in A(s)$ Если $a = a^*$ то $\pi(s) \leftarrow 1 \varepsilon + \varepsilon/|A(s)|$ иначе $\pi(s) \leftarrow \varepsilon/|A(s)|$

Следуем одной стратегии, а оцениваем другую

- Имеющийся алгоритм может находить только ε-жадные стратегии.
- Оценивать оптимальную (жадную)
 стратегию мы можем только если будем управлять по другой стратегии.
- □ Можно ли получить функцию ценности для стратегии π , следуя другой стратегии π '?
 - Да, если из $\pi(s,a) > 0 \Rightarrow \pi'(s,a) > 0$

Следуем одной стратегии, а оцениваем другую

- В эпизоде, полученным действуя по стратегии π', рассмотрим последовательность состояний после i-го посещения состояния s.
- Пусть $p_i(s)$ и $p_i'(s)$ вероятности этой последовательности в случае если мы действовали по стратегии π и π соответственно.
- Погда $V(s) = \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p_i'(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p_i'(s)}}.$

Следуем одной стратегии, а оцениваем другую

□ Итак, нужно найти

$$V(s) = \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}.$$

□ Пусть $T_i(s)$ – время завершения і-го эпизода затрагивающего s. Тогда

$$p_{i}(s_{t}) = \prod_{k=t}^{T_{i}(s)-1} \pi(s_{k}, a_{k}) \mathcal{P}_{s_{k}s_{k+1}}^{a_{k}}$$

$$\frac{p_{i}(s_{t})}{p'_{i}(s_{t})} = \frac{\prod_{k=t}^{T_{i}(s)-1} \pi(s_{k}, a_{k}) \mathcal{P}_{s_{k}s_{k+1}}^{a_{k}}}{\prod_{k=t}^{T_{i}(s)-1} \pi'(s_{k}, a_{k}) \mathcal{P}_{s_{k}s_{k+1}}^{a_{k}}} = \prod_{k=t}^{T_{i}(s)-1} \frac{\pi(s_{k}, a_{k})}{\pi'(s_{k}, a_{k})}.$$

Алгоритм оценки одной стратегии, следуя другой

Инициализация:

```
Q(s,a) \leftarrow произвольно N(s,a) \leftarrow 0 ; числитель D(s,a) \leftarrow 0 ; знаменатель \pi \leftarrow произвольная детерминированная стратегия
```

Повторять вечно:

а) Генерировать эпизод, используя ε -жадную стратегию π' :

$$s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T, s_T$$

- б) τ последний шаг когда a_{τ} ≠ (s_{τ}).
- в) Для всех пар (s,a), появлявшихся в эпизоде после τ :

 $t \leftarrow$ время первого после τ посещения (s,a); $w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k,a_k)}$; $N(s,a) \leftarrow N(s,a) + wR_t$; $D(s,a) \leftarrow D(s,a) + w$; $Q(s,a) \leftarrow \frac{N(s,a)}{D(s,a)}$.

г) Для всех $s \in S$ $\pi(s) \leftarrow \arg\max_a Q(s, a)$

Инкрементальное вычисление оценок

 \square Нам нужно вычислять взвешенное среднее вида $abla_n$

$$V_n = \frac{\sum_{k=1}^{n} w_k R_k}{\sum_{k=1}^{n} w_k}.$$

 Мы можем делать это инкрементальным образом, используя правило обновления

$$V_{n+1} = V_n + \frac{w_{n+1}}{W_{n+1}} \left[R_{n+1} - V_n \right]$$

где $W_{n+1} = W_n + w_{n+1}$ - сумма весов, $W_0 = 0$

Метод Монте-Карло

- + Не требует модели.
- + Обучается при непосредственном взаимодействии со средой.
- + Может использовать модель, дающую примеры эпизодов.
- + Просто работать с подмножеством состояний.
- + Мало подвержены проблемам при отклонении от Марковских состояний.
- Необходимо пробовать все действия
- Работают только для эпизодических задач
- «Делают выводы» только в конце эпизода